Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side.

نویسندگان

  • E Verhulp
  • B van Rietbergen
  • R Huiskes
چکیده

Due to remodeling of bone architecture, an optimal structure is created that minimizes bone mass and maximizes strength. In the case of osteoporotic vertebral bodies, however, this process can create over-adaptation, making them vulnerable for non-habitual loads. In a recent study, micro-finite element models of a healthy and an osteoporotic human proximal femur were analyzed for the stance phase of gait. In the present study, tissue stresses and strains were calculated with the same proximal femur micro-finite element models for a simulated fall to the side onto the greater trochanter. Our specific objectives were to determine the contribution of trabecular bone to the strength of the proximal femurs for this non-habitual load. Further, we tested the hypothesis that the trabecular structure of osteoporotic bone is over-adapted to habitual loads. For that purpose, we calculated the load distributions and estimated the apparent yield and ultimate loads from linear analyses. Two different methods were used for this purpose, which resulted in very similar values, all in a realistic range. Distributions of maximal principal strain and effective strain in the entire model suggest that the contributions to bone strength of the trabecular and cortical structures are similar. However, a thick cortical shell is preferred over a dense trabecular core in the femoral neck. When the load applied to the osteoporotic femur was reduced to approximately 61% of the original value, strain distributions were created similar in value to those obtained for the healthy femur. Since a comparable reduction factor was found for habitual load cases, it was concluded that the osteoporotic femur was not 'over-adapted'.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyses of trabecular bone failure

Due to remodeling of bone architecture an optimal structure is created that minimizes bone mass and maximizes strength. In the case of osteoporotic vertebral bodies, however, this process can create over-adaptation, making them vulnerable for nonhabitual loads. In a recent study, micro-finite element models of a healthy and an osteoporotic human proximal femur were analyzed for the stance phase...

متن کامل

Trabecular bone tissue strains in the healthy and osteoporotic human femur.

UNLABELLED Quantitative information about bone tissue-level loading is essential for understanding bone mechanical behavior. We made microfinite element models of a healthy and osteoporotic human femur and found that tissue-level strains in the osteoporotic femoral head were 70% higher on average and less uniformly distributed than those in the healthy one. INTRODUCTION Bone tissue stresses a...

متن کامل

The effect of two types exercise therapy on bone mineral density and mechanical strength of osteoporotic male rats

Introduction: Osteoporosis is a systemic skeletal disease with a consequent increase in bone fracture. The purpose of this study was to determine skeletal changes induced by two types of exercise therapy in osteoporotic rats. Materials and methods: Among 30 male rats, 6 of them were selected as healthy group, Then Osteoporosis induced in other rats by intraperitoneal injection of 20% ethan...

متن کامل

Development of an Animal Fracture Model for Evaluation of Cement Augmentation Femoroplasty: An In Vitro Biomechanical Study

Osteoporotic hip fracture is the most severe kind of fracture with high morbidity and mortality. Patients' ambulation and quality of life are significantly affected by the fracture because only 50% regain their prefracture functional status, even if they undergo surgeries. There are many issues associated with the current preventive methods e.g., cost, side effects, patient compliance, and time...

متن کامل

An investigation of the effects of osteoporosis, impact intensity and orientation on human femur injuries: a parametric finite element study

Objective: Femur is the strongest, longest and heaviest bone in the human body. Due to the great importance of femur in human body, its injury may cause large numbers of disabilities and mortality. Considering various effective parameters such as mechanical properties, geometry, loading configuration, etc. can propel the study to the trustable results.. Methods: A 3D finite element model of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bone

دوره 42 1  شماره 

صفحات  -

تاریخ انتشار 2008